kénotron - definitie. Wat is kénotron
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is kénotron - definitie

ELECTRICAL DEVICE THAT CONVERTS AC TO DC
Kenotron; Rectification (electricity); Rectifiers; Reservoir capacitor; Full-wave rectifier; Full wave rectifier; AC to DC converter; Half-wave rectifier; Rectifying; AC-DC conversion; AC/DC conversion; AC to DC conversion; Silicon rectifier; FWR; Punch capacitor; Working of full wave rectifier; Electrolytic rectifier; Half-wave rectifier circuit; Full-wave rectifier circuit; Smoothing filter; Semiconductor rectifier; User:RationalAsh/Transformer Utilization factor; Draft:Transformer Utilization factor; Transformer Utilization factor; Half-wave rectification; AC-to-DC converter; AC/DC converter; AC-DC converter; Tungar bulb; Smoothing circuit; Rectified sine wave; Rectified sine; AC-to-DC conversion; Choke-input filter; Choke input filter; Smoothing capacitor; Smoothing condenser; Smoothing cap; Reservoir cap; Sieve capacitor; Reservoir condenser; Buffer capacitor; Buffer condenser; Buffer cap; Buffering capacitor; Bulk capacitor; Bulk cap; Rectifier bulk capacitor
  • Twelve pulse bridge rectifier using [[thyristor]]s as the switching elements. One six-pulse bridge consists of the even-numbered thyristors, the other is the odd-numbered set.
  • Controlled three-phase half-wave rectifier circuit using [[thyristor]]s as the switching elements, ignoring supply inductance
  • 3-phase AC input, half-wave and full-wave rectified DC output waveforms
  • Controlled three-phase full-wave rectifier circuit using [[thyristor]]s as the switching elements, with a center-tapped transformer, ignoring supply inductance
  • Controlled three-phase full-wave bridge rectifier circuit (B6C) using [[thyristor]]s as the switching elements, ignoring supply inductance. The thyristors pulse in order V1–V6.
  • Three-phase Graetz bridge rectifier at alpha=0° without overlap
  • Three-phase Graetz bridge rectifier at alpha=0° with overlap angle of 20°
  • Three-phase controlled Graetz bridge rectifier at alpha=20° with overlap angle of 20°
  • Three-phase controlled Graetz bridge rectifier at alpha=40° with overlap angle of 20°
  • Galena cat's whisker detector
  • Cockcroft Walton voltage multiplier
  • 500px
  • 500px
  • A variety of silicon diodes of different current ratings. At left is a [[bridge rectifier]]. On the 3 center diodes, a painted band identifies the cathode terminal
  • Vacuum tube diodes
  • Full-wave rectifier using a [[center tap]] transformer and 2 diodes.
  • alternator]], showing the six diodes that comprise a full-wave three-phase bridge rectifier.
  • Graetz bridge rectifier: a full-wave rectifier using four diodes.
  • The AC input (yellow) and DC output (green) of a half-wave rectifier with a smoothing capacitor. Note the ripple in the DC signal.
  • Half-wave rectifier, 'U' denotes voltage, 'D' denotes a diode, and 'R' a resistance
  • Two of three high-power thyristor valve stacks used for long-distance transmission of power from [[Manitoba Hydro]] dams. Compare with mercury-arc system from the same dam-site, above.
  • Full-wave diode-bridge rectifier with parallel RC shunt filter
  • A thyristor ([[silicon controlled rectifier]]) and associated mounting hardware. The heavy threaded stud attaches the device to a [[heatsink]] to dissipate heat.
  • Output voltage of a full-wave rectifier with controlled thyristors
  • A small motor-generator set
  • Selenium rectifier
  • Switchable full bridge/voltage doubler.
  • Tungar bulbs from 1917, 2 ampere ''(left)'' and 6 ampere
  • Full-wave rectifier, with vacuum tube having two anodes.
  • vibrator]] battery charger from 1922.  It produced 6 A DC at 6 V to charge automobile batteries.

Rectifier         
·noun One who, or that which, rectifies.
II. Rectifier ·noun Specifically: (a) (Naut.) An instrument used for determining and rectifying the variations of the compass on board ship. (b) (Chem.) A rectificator.
Transformer utilization factor         
Kenotron; Rectification (electricity); Rectifiers; Reservoir capacitor; Full-wave rectifier; Full wave rectifier; AC to DC converter; Half-wave rectifier; Rectifying; AC-DC conversion; AC/DC conversion; AC to DC conversion; Silicon rectifier; FWR; Punch capacitor; Working of full wave rectifier; Electrolytic rectifier; Half-wave rectifier circuit; Full-wave rectifier circuit; Smoothing filter; Semiconductor rectifier; User:RationalAsh/Transformer Utilization factor; Draft:Transformer Utilization factor; Transformer Utilization factor; Half-wave rectification; AC-to-DC converter; AC/DC converter; AC-DC converter; Tungar bulb; Smoothing circuit; Rectified sine wave; Rectified sine; AC-to-DC conversion; Choke-input filter; Choke input filter; Smoothing capacitor; Smoothing condenser; Smoothing cap; Reservoir cap; Sieve capacitor; Reservoir condenser; Buffer capacitor; Buffer condenser; Buffer cap; Buffering capacitor; Bulk capacitor; Bulk cap; Rectifier bulk capacitor
The transformer utilization factor (TUF) of a rectifier circuit is defined as the ratio of the DC power available at the load resistor to the AC rating of the secondary coil of a transformer.
Rectifying         
·p.pr. & ·vb.n. of Rectify.

Wikipedia

Rectifier

A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction. The reverse operation (converting DC to AC) is performed by an inverter.

The process is known as rectification, since it "straightens" the direction of current. Physically, rectifiers take a number of forms, including vacuum tube diodes, wet chemical cells, mercury-arc valves, stacks of copper and selenium oxide plates, semiconductor diodes, silicon-controlled rectifiers and other silicon-based semiconductor switches. Historically, even synchronous electromechanical switches and motor-generator sets have been used. Early radio receivers, called crystal radios, used a "cat's whisker" of fine wire pressing on a crystal of galena (lead sulfide) to serve as a point-contact rectifier or "crystal detector".

Rectifiers have many uses, but are often found serving as components of DC power supplies and high-voltage direct current power transmission systems. Rectification may serve in roles other than to generate direct current for use as a source of power. As noted, rectifiers can serve as detectors of radio signals. In gas heating systems flame rectification is used to detect presence of a flame.

Depending on the type of alternating current supply and the arrangement of the rectifier circuit, the output voltage may require additional smoothing to produce a uniform steady voltage. Many applications of rectifiers, such as power supplies for radio, television and computer equipment, require a steady constant DC voltage (as would be produced by a battery). In these applications the output of the rectifier is smoothed by an electronic filter, which may be a capacitor, choke, or set of capacitors, chokes and resistors, possibly followed by a voltage regulator to produce a steady voltage.

More complex circuitry that performs the opposite function, that is converting DC to AC, is called an inverter.